GN809

µProcessor Supervisory

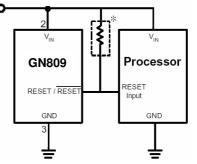
Description

The GN809 family allows the user to customize the CPU reset function without any external components. The user has a large choice of reset voltage thresholds and output driver configurations, all of which are preset at the factory. Each wafer is trimmed to the customer's specifications.

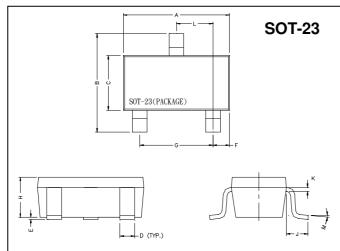
These circuits monitor the power supply voltage of up based systems. When the power supply voltage drops below the voltage threshold a reset is asserted immediately (within an interval T_{D1}). The reset remains asserted after the supply voltage rises above the voltage threshold for a time interval, T_{D2} . The reset output is active low (RESETB). The reset output may be configured as either push/pull or open drain. The state of the reset output is guaranteed to be correct for supply voltage greater than 1V.

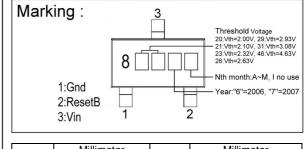
Space saving SOT-23 package and micropower quiescent current (<3.0uA) make this family a natural for portable battery powered equipment.

Features

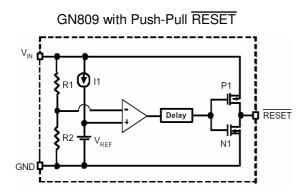

- Tight Voltage Threshold Tolerance ±1.5%
- Wide Temperature Range -40 $^\circ\!\mathrm{C}$ to 80 $^\circ\!\mathrm{C}$
- Low Quiescent Current <3.0uA
- Lead Free Products Meet RoHS standards

Applications


- Power Supplies
- Data Acquisition Systems
- Applications using CPUs
- Consumer Electronics
- Computer Peripherals
- Portable Electronics


Package Dimensions

Typical Operating Circuit


Note:* External pull-up resistor is required if open-drain output is used. $10k\Omega$ is recommended.

Б	REF.	Millimeter		REF.	Millimeter		
		Min.	Max.	ΠLΙ.	Min.	Max.	
	Α	2.70	3.10	G	1.90	REF.	
	В	2.40	2.80	H	1.00	1.30	
	С	1.40	1.60	K	0.10	0.20	
	D	0.35	0.50	J	0.40	-	
	E	0	0.10	L	0.85	1.15	
	F	0.45	0.55	М	0°	10°	

Block Diagram

Pin Description

Pin Name	Pin Description			
Gnd	Ground			
RESETB	RESETB is active low and push-pull output			
VIN	Positive power supply. A reset is asserted after this voltage drops below a predetermined. After VIN rises above that level the reset output remains asserted until the end of the reset timeout period.			

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input Voltage	VIN	7	V
Input Current, VIN		20	mA
Output Current, RESETB		20	mA
Rate of Rise, VIN		100	V/µs
Ambient Temperature Range	ТА	-40 ~ +85	°C
Junction Temperature Range	TJ	-40 ~ +125	°C
Storage Temperature Range	Тѕтс	-65 ~ +150	°C
Maximum Junction Temperature	Tj Max	150	°C
Thermal Resistance	20 100 TA -40 ~ +85 TJ -40 ~ +125 TSTG -65 ~ +150	°C/W	
	θја	285	°C/W
Internal Power Dissipation	PD	400	mW
Solder Iron (10 Sec)*		350	°C
EDS Classification		B**	

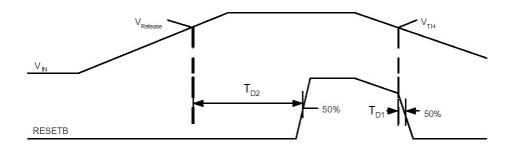
Caution: Stress above the listed absolute maximum rating may cause permanent damage of the device

*MIL-STDS-202G 210F

**HBM B: 2000V ~ 3999V

Electrical Characteristics Ta=25°C (unless otherwise noted)

Parameter	Symbol	Condition		Min	TYP	Max	Unit
VIN Range	VRange	Ta=-40°C ~ +85°C		1	-	5.5	V
Supply Current	lin	VIN= VTH*1.10		-	-	3.0	μΑ
Supply Current	IIN	Vin= Vth*1.10, Ta=-40°C ~ +85°C		-	-	5.0	
Reset Threshold Voltage	Vтн		VTH(No -1.59		-	VTH(NOM) +1.5%	mV
neset miesnoù voltage	VIH	Ta=-40°C∼ +85°C		Vth(NOM) -2.0%	-	VTH(NOM) +2.0%	
Hysteresis Range (Note2)	VHYST	V _{Release} -V _{TH} (Note1)		10	30	60	mV
RESET Threshold Tempco (Note2)				30	50	160	ppm
RESETB Output Voltage Low	Vol	Vin <vth(min), isink="1.2mA<br">Ta=-40℃~ +85℃</vth(min),>		-	-	0.2	V
RESETB Output	Vон	Vin>Vth(MAX)	Isource=0.5mA Vin>1.8V	- 0.8*Vin	-	-	V
Voltage High			Isource=0.15mA 1.8V≥ Vıง>1.0V				
ViN to Reset Delay	TD1	Vin= Vth-100mV, Ta=-40°C ~ +85°C		-	40	-	μS
Reset Timeout Period	TD2	Ta=-40°C ~ +85°C		80	150	230	mS

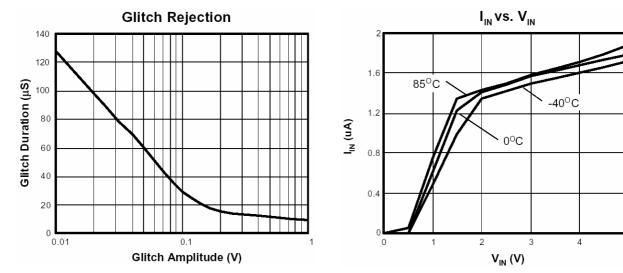

Note 1: The data based on VTH=2.7V part type.

2: Guaranteed by Design

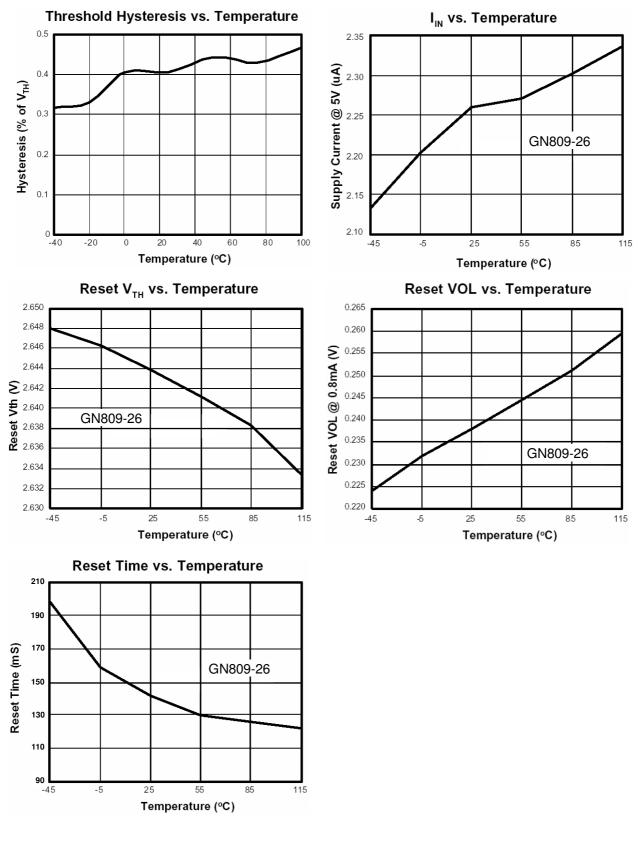
Ordering Information (contd.)

Part Number	Marking	Output Voltage	Part Number	Marking	Output Voltage
GN809-20	820XX	2.00V	GN809-21	821XX	2.10V
GN809-23	823XX	2.32V	GN809-26	826XX	2.63V
GN809-29	829XX	2.93V	GN809-31	831XX	3.08V
GN809-46	846XX	4.63V			

Timing Diagram



Application Information


Supply Transients

These device have a certain immunity to fast negative going transients. In the following pages the graph titled "Glitch Rejection" indicates the maximum allowable glitch amplitude and duration to avoid triggering an unintended reset. As shown in the graph shorter transient can have large amplitudes without triggering resets.

Characteristics Curve

5

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM. GTM reserves the right to make changes to its products without notice.

GTM seniconductor products are not warranted to be suitable for use in life-support Applications, or systems. GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.